
Package: clustree (via r-universe)
September 3, 2024

Type Package
Title Visualise Clusterings at Different Resolutions
Version 0.5.1
Date 2023-11-05
Maintainer Luke Zappia <luke@lazappi.id.au>

Description Deciding what resolution to use can be a difficult
question when approaching a clustering analysis. One way to
approach this problem is to look at how samples move as the
number of clusters increases. This package allows you to
produce clustering trees, a visualisation for interrogating
clusterings as resolution increases.

License GPL-3
Encoding UTF-8
LazyData true

URL https://github.com/lazappi/clustree,
https://lazappi.github.io/clustree/

BugReports https://github.com/lazappi/clustree/issues

VignetteBuilder knitr
Depends R (>= 3.5), ggraph
Imports checkmate, igraph, dplyr, grid, ggplot2 (>= 3.4.0), viridis,

methods, rlang, tidygraph, ggrepel
Suggests testthat (>= 2.1.0), knitr, rmarkdown, SingleCellExperiment,

Seurat (>= 2.3.0), covr, SummarizedExperiment, pkgdown,
spelling

Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3
Language en-GB
Repository https://lazappi.r-universe.dev
RemoteUrl https://github.com/lazappi/clustree
RemoteRef HEAD
RemoteSha 24900bdf459c29812c716ba9f889c58685f957ed

1

https://github.com/lazappi/clustree
https://lazappi.github.io/clustree/
https://github.com/lazappi/clustree/issues

2 clustree

Contents
clustree-package . 2
clustree . 2
clustree_overlay . 6
nba_clusts . 10
sc_example . 10

Index 12

clustree-package Clustree

Description

Deciding what resolution to use can be a difficult question when approaching a clustering analy-
sis. One way to approach this problem is to look at how samples move as the number of clusters
increases. This package allows you to produce clustering trees, a visualisation for interrogating
clusterings as resolution increases.

clustree Plot a clustering tree

Description

Creates a plot of a clustering tree showing the relationship between clusterings at different resolu-
tions.

Usage

clustree(x, ...)

S3 method for class 'matrix'
clustree(
x,
prefix,
suffix = NULL,
metadata = NULL,
count_filter = 0,
prop_filter = 0.1,
layout = c("tree", "sugiyama"),
use_core_edges = TRUE,
highlight_core = FALSE,
node_colour = prefix,
node_colour_aggr = NULL,
node_size = "size",

clustree 3

node_size_aggr = NULL,
node_size_range = c(4, 15),
node_alpha = 1,
node_alpha_aggr = NULL,
node_text_size = 3,
scale_node_text = FALSE,
node_text_colour = "black",
node_text_angle = 0,
node_label = NULL,
node_label_aggr = NULL,
node_label_size = 3,
node_label_nudge = -0.2,
edge_width = 1.5,
edge_arrow = TRUE,
edge_arrow_ends = c("last", "first", "both"),
show_axis = FALSE,
return = c("plot", "graph", "layout"),
...

)

S3 method for class 'data.frame'
clustree(x, prefix, ...)

S3 method for class 'SingleCellExperiment'
clustree(x, prefix, exprs = "counts", ...)

S3 method for class 'seurat'
clustree(x, prefix = "res.", exprs = c("data", "raw.data", "scale.data"), ...)

S3 method for class 'Seurat'
clustree(
x,
prefix = paste0(assay, "_snn_res."),
exprs = c("data", "counts", "scale.data"),
assay = NULL,
...

)

Arguments

x object containing clustering data

... extra parameters passed to other methods

prefix string indicating columns containing clustering information

suffix string at the end of column names containing clustering information

metadata data.frame containing metadata on each sample that can be used as node aes-
thetics

count_filter count threshold for filtering edges in the clustering graph

4 clustree

prop_filter in proportion threshold for filtering edges in the clustering graph

layout string specifying the "tree" or "sugiyama" layout, see igraph::layout_as_tree()
and igraph::layout_with_sugiyama() for details

use_core_edges logical, whether to only use core tree (edges with maximum in proportion for
a node) when creating the graph layout, all (unfiltered) edges will still be dis-
played

highlight_core logical, whether to increase the edge width of the core network to make it easier
to see

node_colour either a value indicating a colour to use for all nodes or the name of a metadata
column to colour nodes by

node_colour_aggr

if node_colour is a column name than a string giving the name of a function to
aggregate that column for samples in each cluster

node_size either a numeric value giving the size of all nodes or the name of a metadata
column to use for node sizes

node_size_aggr if node_size is a column name than a string giving the name of a function to
aggregate that column for samples in each cluster

node_size_range

numeric vector of length two giving the maximum and minimum point size for
plotting nodes

node_alpha either a numeric value giving the alpha of all nodes or the name of a metadata
column to use for node transparency

node_alpha_aggr

if node_aggr is a column name than a string giving the name of a function to
aggregate that column for samples in each cluster

node_text_size numeric value giving the size of node text if scale_node_text is FALSE
scale_node_text

logical indicating whether to scale node text along with the node size
node_text_colour

colour value for node text (and label)
node_text_angle

the rotation of the node text

node_label additional label to add to nodes
node_label_aggr

if node_label is a column name than a string giving the name of a function to
aggregate that column for samples in each cluster

node_label_size

numeric value giving the size of node label text
node_label_nudge

numeric value giving nudge in y direction for node labels

edge_width numeric value giving the width of plotted edges

edge_arrow logical indicating whether to add an arrow to edges

clustree 5

edge_arrow_ends

string indicating which ends of the line to draw arrow heads if edge_arrow is
TRUE, one of "last", "first", or "both"

show_axis whether to show resolution axis

return string specifying what to return, either "plot" (a ggplot object), "graph" (a
tbl_graph object) or "layout" (a ggraph layout object)

exprs source of gene expression information to use as node aesthetics, for SingleCellExperiment
objects it must be a name in assayNames(x), for a seurat object it must be one
of data, raw.data or scale.data and for a Seurat object it must be one of
data, counts or scale.data

assay name of assay to pull expression and clustering data from for Seurat objects

Details

Data sources

Plotting a clustering tree requires information about which cluster each sample has been assigned to
at different resolutions. This information can be supplied in various forms, as a matrix, data.frame
or more specialised object. In all cases the object provided must contain numeric columns with the
naming structure PXS where P is a prefix indicating that the column contains clustering information,
X is a numeric value indicating the clustering resolution and S is any additional suffix to be removed.
For SingleCellExperiment objects this information must be in the colData slot and for Seurat
objects it must be in the meta.data slot. For all objects except matrices any additional columns can
be used as aesthetics, for matrices an additional metadata data.frame can be supplied if required.

Filtering

Edges in the graph can be filtered by adjusting the count_filter and prop_filter parameters.
The count_filter removes any edges that represent less than that number of samples, while the
prop_filter removes edges that represent less than that proportion of cells in the node it points
towards.

Node aesthetics

The aesthetics of the plotted nodes can be controlled in various ways. By default the colour in-
dicates the clustering resolution, the size indicates the number of samples in that cluster and the
transparency is set to 100%. Each of these can be set to a specific value or linked to a supplied
metadata column. For a SingleCellExperiment or Seurat object the names of genes can also be
used. If a metadata column is used than an aggregation function must also be supplied to combine
the samples in each cluster. This function must take a vector of values and return a single value.

Layout

The clustering tree can be displayed using either the Reingold-Tilford tree layout algorithm or
the Sugiyama layout algorithm for layered directed acyclic graphs. These layouts were selected
as the are the algorithms available in the igraph package designed for trees. The Reingold-
Tilford algorithm places children below their parents while the Sugiyama places nodes in layers
while trying to minimise the number of crossing edges. See igraph::layout_as_tree() and
igraph::layout_with_sugiyama() for more details. When use_core_edges is TRUE (default)
only the core tree of the maximum in proportion edges for each node are used for constructing the
layout. This can often lead to more attractive layouts where the core tree is more visible.

6 clustree_overlay

Value

a ggplot object (default), a tbl_graph object or a ggraph layout object depending on the value of
return

Examples

data(nba_clusts)
clustree(nba_clusts, prefix = "K")

clustree_overlay Overlay a clustering tree

Description

Creates a plot of a clustering tree overlaid on a scatter plot of individual samples.

Usage

clustree_overlay(x, ...)

S3 method for class 'matrix'
clustree_overlay(
x,
prefix,
metadata,
x_value,
y_value,
suffix = NULL,
count_filter = 0,
prop_filter = 0.1,
node_colour = prefix,
node_colour_aggr = NULL,
node_size = "size",
node_size_aggr = NULL,
node_size_range = c(4, 15),
node_alpha = 1,
node_alpha_aggr = NULL,
edge_width = 1,
use_colour = c("edges", "points"),
alt_colour = "black",
point_size = 3,
point_alpha = 0.2,
point_shape = 18,
label_nodes = FALSE,
label_size = 3,
plot_sides = FALSE,

clustree_overlay 7

side_point_jitter = 0.45,
side_point_offset = 1,
...

)

S3 method for class 'data.frame'
clustree_overlay(x, prefix, ...)

S3 method for class 'SingleCellExperiment'
clustree_overlay(
x,
prefix,
x_value,
y_value,
exprs = "counts",
red_dim = NULL,
...

)

S3 method for class 'seurat'
clustree_overlay(
x,
x_value,
y_value,
prefix = "res.",
exprs = c("data", "raw.data", "scale.data"),
red_dim = NULL,
...

)

S3 method for class 'Seurat'
clustree_overlay(
x,
x_value,
y_value,
prefix = paste0(assay, "_snn_res."),
exprs = c("data", "counts", "scale.data"),
red_dim = NULL,
assay = NULL,
...

)

Arguments

x object containing clustering data

... extra parameters passed to other methods

prefix string indicating columns containing clustering information

8 clustree_overlay

metadata data.frame containing metadata on each sample that can be used as node aes-
thetics

x_value numeric metadata column to use as the x axis
y_value numeric metadata column to use as the y axis
suffix string at the end of column names containing clustering information
count_filter count threshold for filtering edges in the clustering graph
prop_filter in proportion threshold for filtering edges in the clustering graph
node_colour either a value indicating a colour to use for all nodes or the name of a metadata

column to colour nodes by
node_colour_aggr

if node_colour is a column name than a string giving the name of a function to
aggregate that column for samples in each cluster

node_size either a numeric value giving the size of all nodes or the name of a metadata
column to use for node sizes

node_size_aggr if node_size is a column name than a string giving the name of a function to
aggregate that column for samples in each cluster

node_size_range

numeric vector of length two giving the maximum and minimum point size for
plotting nodes

node_alpha either a numeric value giving the alpha of all nodes or the name of a metadata
column to use for node transparency

node_alpha_aggr

if node_aggr is a column name than a string giving the name of a function to
aggregate that column for samples in each cluster

edge_width numeric value giving the width of plotted edges
use_colour one of "edges" or "points" specifying which element to apply the colour aes-

thetic to
alt_colour colour value to be used for edges or points (whichever is NOT given by use_colour)
point_size numeric value giving the size of sample points
point_alpha numeric value giving the alpha of sample points
point_shape numeric value giving the shape of sample points
label_nodes logical value indicating whether to add labels to clustering graph nodes
label_size numeric value giving the size of node labels is label_nodes is TRUE
plot_sides logical value indicating whether to produce side on plots
side_point_jitter

numeric value giving the y-direction spread of points in side plots
side_point_offset

numeric value giving the y-direction offset for points in side plots
exprs source of gene expression information to use as node aesthetics, for SingleCellExperiment

objects it must be a name in assayNames(x), for a seurat object it must be one
of data, raw.data or scale.data and for a Seurat object it must be one of
data, counts or scale.data

red_dim dimensionality reduction to use as a source for x_value and y_value
assay name of assay to pull expression and clustering data from for Seurat objects

clustree_overlay 9

Details

Data sources

Plotting a clustering tree requires information about which cluster each sample has been assigned to
at different resolutions. This information can be supplied in various forms, as a matrix, data.frame
or more specialised object. In all cases the object provided must contain numeric columns with the
naming structure PXS where P is a prefix indicating that the column contains clustering information,
X is a numeric value indicating the clustering resolution and S is any additional suffix to be removed.
For SingleCellExperiment objects this information must be in the colData slot and for Seurat
objects it must be in the meta.data slot. For all objects except matrices any additional columns can
be used as aesthetics.

Filtering

Edges in the graph can be filtered by adjusting the count_filter and prop_filter parameters.
The count_filter removes any edges that represent less than that number of samples, while the
prop_filter removes edges that represent less than that proportion of cells in the node it points
towards.

Node aesthetics

The aesthetics of the plotted nodes can be controlled in various ways. By default the colour in-
dicates the clustering resolution, the size indicates the number of samples in that cluster and the
transparency is set to 100%. Each of these can be set to a specific value or linked to a supplied
metadata column. For a SingleCellExperiment or Seurat object the names of genes can also be
used. If a metadata column is used than an aggregation function must also be supplied to combine
the samples in each cluster. This function must take a vector of values and return a single value.

Colour aesthetic

The colour aesthetic can be applied to either edges or sample points by setting use_colour. If
"edges" is selected edges will be coloured according to the clustering resolution they originate at. If
"points" is selected they will be coloured according to the cluster they are assigned to at the highest
resolution.

Dimensionality reductions

For SingleCellExperiment and Seurat objects precomputed dimensionality reductions can be
used for x or y aesthetics. To do so red_dim must be set to the name of a dimensionality reduction
in reducedDimNames(x) (for a SingleCellExperiment) or x@dr (for a Seurat object). x_value
and y_value can then be set to red_dimX when red_dim matches the red_dim argument and X is
the column of the dimensionality reduction to use.

Value

a ggplot object if plot_sides is FALSE or a list of ggplot objects if plot_sides is TRUE

Examples

data(nba_clusts)
clustree_overlay(nba_clusts, prefix = "K", x_value = "PC1", y_value = "PC2")

10 sc_example

nba_clusts Clustered NBA positions dataset

Description

NBA positions dataset clustered using k-means with a range of values of k

Usage

nba_clusts

Format

nba_clusts is a data.frame containing the NBA positions dataset with additional columns holding
k-means clusterings at different values of k and the first two principal components

• Position - Player position

• TurnoverPct - Turnover percentage

• ReboundPct - Rebound percentage

• AssistPct - Assist percentage

• FieldGoalPct - Field goal percentage

• K1 - K5 - Results of k-means clustering

• PC1 - First principal component

• PC2 - Second principal component

Source

NBA positions downloaded from https://github.com/lazappi/nba_positions.

The source dataset is available from Kaggle at https://www.kaggle.com/drgilermo/nba-players-stats/
data?select=Seasons_Stats.csv and was originally scraped from Basketball Reference.

See https://github.com/lazappi/clustree/blob/master/data-raw/nba_clusts.R for de-
tails of how clustering was performed.

sc_example Simulated scRNA-seq dataset

Description

A simulated scRNA-seq dataset generated using the splatter package and clustered using the SC3
and Seurat packages.

Usage

sc_example

https://github.com/lazappi/nba_positions
https://www.kaggle.com/drgilermo/nba-players-stats/data?select=Seasons_Stats.csv
https://www.kaggle.com/drgilermo/nba-players-stats/data?select=Seasons_Stats.csv
https://www.basketball-reference.com/
https://github.com/lazappi/clustree/blob/master/data-raw/nba_clusts.R

sc_example 11

Format

sc_example is a list holding a simulated scRNA-seq dataset. Items in the list included the simulated
counts, normalised log counts, tSNE dimensionality reduction and cell assignments from SC3 and
Seurat clustering.

Source

Simulation
library("splatter") # Version 1.2.1

sim <- splatSimulate(batchCells = 200, nGenes = 10000,
group.prob = c(0.4, 0.2, 0.2, 0.15, 0.05),
de.prob = c(0.1, 0.2, 0.05, 0.1, 0.05),
method = "groups", seed = 1)

sim_counts <- counts(sim)[1:1000,]

SC3 Clustering
library("SC3") # Version 1.7.6
library("scater") # Version 1.6.2

sim_sc3 <- SingleCellExperiment(assays = list(counts = sim_counts))
rowData(sim_sc3)$feature_symbol <- rownames(sim_counts)
sim_sc3 <- normalise(sim_sc3)
sim_sc3 <- sc3(sim_sc3, ks = 1:8, biology = FALSE, n_cores = 1)
sim_sc3 <- runTSNE(sim_sc3)

Seurat Clustering
library("Seurat") # Version 2.2.0

sim_seurat <- CreateSeuratObject(sim_counts)
sim_seurat <- NormalizeData(sim_seurat, display.progress = FALSE)
sim_seurat <- FindVariableGenes(sim_seurat, do.plot = FALSE,

display.progress = FALSE)
sim_seurat <- ScaleData(sim_seurat, display.progress = FALSE)
sim_seurat <- RunPCA(sim_seurat, do.print = FALSE)
sim_seurat <- FindClusters(sim_seurat, dims.use = 1:6,

resolution = seq(0, 1, 0.1),
print.output = FALSE)

sc_example <- list(counts = counts(sim_sc3),
logcounts = logcounts(sim_sc3),
tsne = reducedDim(sim_sc3),
sc3_clusters = as.data.frame(colData(sim_sc3)),
seurat_clusters = sim_seurat@meta.data)

Index

∗ datasets
nba_clusts, 10
sc_example, 10

clustree, 2
clustree-package, 2
clustree_overlay, 6

igraph::layout_as_tree(), 4, 5
igraph::layout_with_sugiyama(), 4, 5

nba_clusts, 10

sc_example, 10

12

	clustree-package
	clustree
	clustree_overlay
	nba_clusts
	sc_example
	Index

