{anndataR} allows
users to work with .h5ad
files, access various slots in the
datasets and convert these files to SingleCellExperiment
objects and SeuratObject
s, and vice versa.
Check out ?anndataR
for a full list of the functions
provided by this package.
Install using:
Here’s a quick example of how to use {anndataR}.
First, we fetch an example .h5ad
file included in the
package:
Read an h5ad file in memory:
Read an h5ad file on disk:
View structure:
adata
#> AnnData object with n_obs × n_vars = 50 × 100
#> obs: 'Float', 'FloatNA', 'Int', 'IntNA', 'Bool', 'BoolNA', 'n_genes_by_counts', 'log1p_n_genes_by_counts', 'total_counts', 'log1p_total_counts', 'leiden'
#> var: 'String', 'n_cells_by_counts', 'mean_counts', 'log1p_mean_counts', 'pct_dropout_by_counts', 'total_counts', 'log1p_total_counts', 'highly_variable', 'means', 'dispersions', 'dispersions_norm'
#> uns: 'Bool', 'BoolNA', 'Category', 'DataFrameEmpty', 'Int', 'IntNA', 'IntScalar', 'Sparse1D', 'String', 'String2D', 'StringScalar', 'hvg', 'leiden', 'log1p', 'neighbors', 'pca', 'rank_genes_groups', 'umap'
#> obsm: 'X_pca', 'X_umap'
#> varm: 'PCs'
#> layers: 'counts', 'csc_counts', 'dense_X', 'dense_counts'
#> obsp: 'connectivities', 'distances'
Access AnnData slots:
dim(adata$X)
#> [1] 50 100
adata$obs[1:5, 1:6]
#> Float FloatNA Int IntNA Bool BoolNA
#> Cell000 42.42 NaN 0 NA FALSE FALSE
#> Cell001 42.42 42.42 1 42 TRUE NA
#> Cell002 42.42 42.42 2 42 TRUE TRUE
#> Cell003 42.42 42.42 3 42 TRUE TRUE
#> Cell004 42.42 42.42 4 42 TRUE TRUE
adata$var[1:5, 1:6]
#> String n_cells_by_counts mean_counts log1p_mean_counts
#> Gene000 String0 44 1.94 1.078410
#> Gene001 String1 42 2.04 1.111858
#> Gene002 String2 43 2.12 1.137833
#> Gene003 String3 41 1.72 1.000632
#> Gene004 String4 42 2.06 1.118415
#> pct_dropout_by_counts total_counts
#> Gene000 12 97
#> Gene001 16 102
#> Gene002 14 106
#> Gene003 18 86
#> Gene004 16 103
Convert the AnnData object to a SingleCellExperiment object:
sce <- adata$to_SingleCellExperiment()
sce
#> class: SingleCellExperiment
#> dim: 100 50
#> metadata(18): Bool BoolNA ... rank_genes_groups umap
#> assays(5): data counts csc_counts dense_X dense_counts
#> rownames(100): Gene000 Gene001 ... Gene098 Gene099
#> rowData names(11): String n_cells_by_counts ... dispersions
#> dispersions_norm
#> colnames(50): Cell000 Cell001 ... Cell048 Cell049
#> colData names(11): Float FloatNA ... log1p_total_counts leiden
#> reducedDimNames(2): pca umap
#> mainExpName: NULL
#> altExpNames(0):
Convert the AnnData object to a Seurat object:
obj <- adata$to_Seurat()
#> Warning: Data is of class dgRMatrix. Coercing to dgCMatrix.
#> Warning: No columnames present in cell embeddings, setting to 'PC_1:38'
#> Warning: No columnames present in cell embeddings, setting to 'umap_1:2'
obj
#> An object of class Seurat
#> 100 features across 50 samples within 1 assay
#> Active assay: RNA (100 features, 0 variable features)
#> 5 layers present: counts, data, csc_counts, dense_X, dense_counts
#> 2 dimensional reductions calculated: pca, umap
sessionInfo()
#> R version 4.4.2 (2024-10-31)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#>
#> Matrix products: default
#> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: Etc/UTC
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats4 stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] anndataR_0.99.0 SingleCellExperiment_1.29.1
#> [3] SummarizedExperiment_1.37.0 Biobase_2.67.0
#> [5] GenomicRanges_1.59.1 GenomeInfoDb_1.43.4
#> [7] IRanges_2.41.2 S4Vectors_0.45.2
#> [9] BiocGenerics_0.53.6 generics_0.1.3
#> [11] MatrixGenerics_1.19.1 matrixStats_1.5.0
#> [13] SeuratObject_5.0.2 sp_2.2-0
#> [15] BiocStyle_2.35.0
#>
#> loaded via a namespace (and not attached):
#> [1] RColorBrewer_1.1-3 sys_3.4.3 jsonlite_1.8.9
#> [4] magrittr_2.0.3 spatstat.utils_3.1-2 farver_2.1.2
#> [7] rmarkdown_2.29 vctrs_0.6.5 ROCR_1.0-11
#> [10] spatstat.explore_3.3-4 htmltools_0.5.8.1 S4Arrays_1.7.2
#> [13] SparseArray_1.7.5 sass_0.4.9 sctransform_0.4.1
#> [16] parallelly_1.42.0 KernSmooth_2.23-26 bslib_0.9.0
#> [19] htmlwidgets_1.6.4 ica_1.0-3 plyr_1.8.9
#> [22] plotly_4.10.4 zoo_1.8-12 cachem_1.1.0
#> [25] buildtools_1.0.0 igraph_2.1.4 mime_0.12
#> [28] lifecycle_1.0.4 pkgconfig_2.0.3 Matrix_1.7-2
#> [31] R6_2.5.1 fastmap_1.2.0 GenomeInfoDbData_1.2.13
#> [34] fitdistrplus_1.2-2 future_1.34.0 shiny_1.10.0
#> [37] digest_0.6.37 colorspace_2.1-1 patchwork_1.3.0
#> [40] tensor_1.5 Seurat_5.2.1 RSpectra_0.16-2
#> [43] irlba_2.3.5.1 progressr_0.15.1 spatstat.sparse_3.1-0
#> [46] polyclip_1.10-7 httr_1.4.7 abind_1.4-8
#> [49] compiler_4.4.2 bit64_4.6.0-1 fastDummies_1.7.5
#> [52] MASS_7.3-64 DelayedArray_0.33.5 tools_4.4.2
#> [55] lmtest_0.9-40 httpuv_1.6.15 future.apply_1.11.3
#> [58] goftest_1.2-3 glue_1.8.0 nlme_3.1-167
#> [61] promises_1.3.2 grid_4.4.2 Rtsne_0.17
#> [64] cluster_2.1.8 reshape2_1.4.4 hdf5r_1.3.12
#> [67] spatstat.data_3.1-4 gtable_0.3.6 tidyr_1.3.1
#> [70] data.table_1.16.4 XVector_0.47.2 spatstat.geom_3.3-5
#> [73] RcppAnnoy_0.0.22 ggrepel_0.9.6 RANN_2.6.2
#> [76] pillar_1.10.1 stringr_1.5.1 spam_2.11-1
#> [79] RcppHNSW_0.6.0 later_1.4.1 splines_4.4.2
#> [82] dplyr_1.1.4 lattice_0.22-6 deldir_2.0-4
#> [85] survival_3.8-3 bit_4.5.0.1 tidyselect_1.2.1
#> [88] maketools_1.3.1 miniUI_0.1.1.1 pbapply_1.7-2
#> [91] knitr_1.49 gridExtra_2.3 scattermore_1.2
#> [94] xfun_0.50 stringi_1.8.4 UCSC.utils_1.3.1
#> [97] lazyeval_0.2.2 yaml_2.3.10 evaluate_1.0.3
#> [100] codetools_0.2-20 tibble_3.2.1 BiocManager_1.30.25
#> [103] cli_3.6.3 uwot_0.2.2 xtable_1.8-4
#> [106] reticulate_1.40.0 munsell_0.5.1 jquerylib_0.1.4
#> [109] Rcpp_1.0.14 spatstat.random_3.3-2 globals_0.16.3
#> [112] png_0.1-8 spatstat.univar_3.1-1 parallel_4.4.2
#> [115] ggplot2_3.5.1 dotCall64_1.2 listenv_0.9.1
#> [118] viridisLite_0.4.2 scales_1.3.0 ggridges_0.5.6
#> [121] purrr_1.0.4 crayon_1.5.3 rlang_1.1.5
#> [124] cowplot_1.1.3